CC-GRMAS: A Multi-Agent Graph Neural System for Spatiotemporal Landslide Risk Assessment in High Mountain Asia

Mihir Panchal, Ying Jung Chen, Surya Parkash

Introduction

Landslides, driven by climate change, pose significant risks to life and economic stability, particularly in **High Mountain Asia**, where complex topography, active seismicity, and shifting precipitation patterns amplify vulnerability. More than **1.5 billion people** depend on the glaciers and rivers of the HMA, making the impacts of these hazards particularly severe

Current Challenges:

- Weak spatial modeling and data integration
- Fragmented disaster response mechanisms
- Limited real-time monitoring capabilities
- Poor coordination among stakeholders

Dataset

Table 1: Graph Database Node Type Distribution

Node Type	Count	Percentage	Description
Event	1,558	61.1%	Core landslide event records
Source GazetteerPoint	440 331	17.2% 13.0%	Information sources and references Geographic reference points
LandslideProfile	223	8.7%	Landslide characterization profiles
Total	2,552	100.0%	Complete node inventory

NASA Global Landslide Catalog (GLC)

Coverage: 2007-2020 | Events: 1,558 (HMA region)

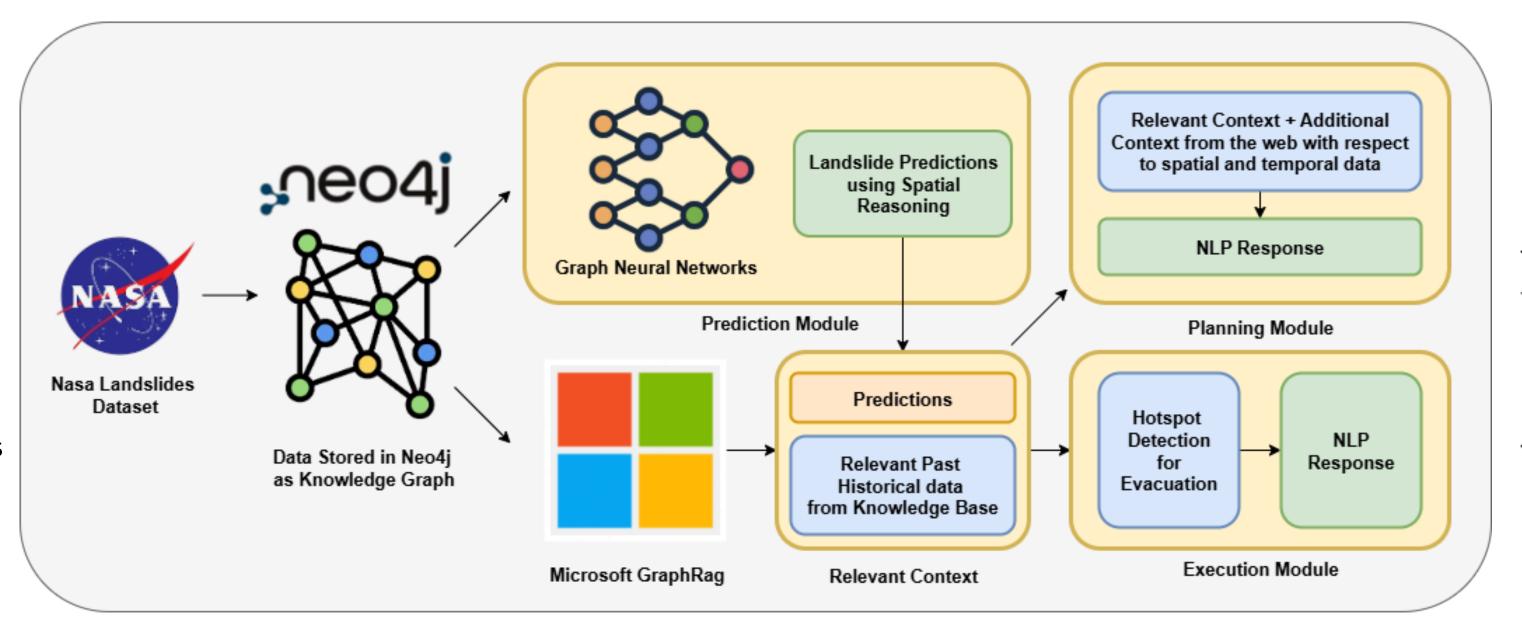
Sources: News: News Articles, Scientific literature, Government reports

Provider: NASA Goddard/GPM mission

Table 2: Landslide Event Record Attributes

Category	Attribute	Description		
Temporal	event_date submitted_date	Date of landslide occurrence Record submission date		
Spatial	latitude longitude location_description location_accuracy	Geographic coordinate Geographic coordinate Textual location description Coordinate precision assessment		
Impact	fatality_count injury_count	Confirmed fatalities Reported injuries		
Descriptive	event_title event_description	Brief event identifier Detailed event narrative		

Methodology



Prediction Agent

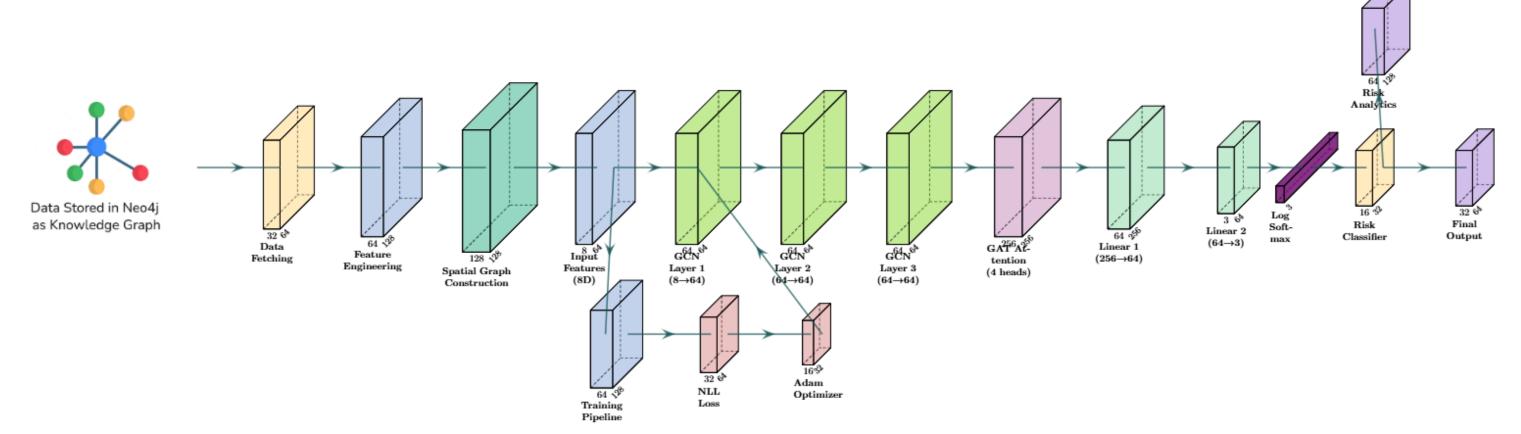
- Graph Neural Networks with **attention** mechanisms
- Models **spatial dependencies** between landslide events
- 42.7K parameters 99.9% reduction vs traditional CNNs
- Dynamic **proximity graphs** for enhanced risk modelling

🧠 Planning Agent

- Large Language Models with GraphRAG integration
- Context aware risk analysis and climate impact assessment
- Vector embeddings for **semantic search** across knowledge graph
- Comprehensive assessment of **temporal** and geographic patterns

Execution Agent

- Automated hotspot detection via grid based spatial sampling
- Coordinates predictions with **contextual** analysis
- Generates **spatially** aware response recommendations
- Real time intervention for vulnerable communities



Detailed Graph Neural Network Architecture for the Prediction Agent showing the complete data processing pipeline from raw landslide data through feature engineering, spatial graph construction, GCN and GAT layers, to final risk classification output.

Georgia Institute of Technology

Results

Table 3: Performance comparison of baseline models and U-Net for landslide forecasting.

Approach	Method	F1-Score	Precision	Recall	Params (M)
Nepal Study [26]	RF	0.56	0.47	0.70	< 0.1
Nepal Study [26]	XGB	0.54	0.45	0.67	< 0.1
Nepal Study [26]	GB	0.56	0.49	0.65	< 0.1
Nepal Study [26]	U-Net	0.79	0.91	0.69	31.0
CC-GRMAS (Ours)	Spatial GNN	0.7981	0.8062	0.7928	<0.1

Key Advantages:

- Faster training and inference
- Lower memory requirements
- Scalable to larger geographic regions
- Interpretable spatial relationships
- Suitable for resource constrained deployment in HMA

Table 4: Semantic Coherence Metric Components for GraphRAG Evaluation

Component	Score	Description			
Overall Semantic Coherence	0.751	Composite metric measuring retrieval quality and answer relevance averaged across all HMA countries			
Average Similarity	0.814	Mean cosine similarity between retrieved nodes and ground truth across all retrieved results			
Weighted Similarity	0.821	Position weighted similarity emphasizing higher ranked retrieval results			
Maximum Similarity	0.840	Best single node match indicating peak retrieval accuracy of nodes			
Minimum Similarity	0.797	Weakest node match showing lower bound of retrieval quality			
Diversity Score	0.143	Measure of information variety across retrieved nodes balancing relevance with coverage			

Summary and Outlook

CC-GRMAS provides an efficient, interpretable, and scalable multi-agent framework for climate resilient disaster preparedness in vulnerable mountain regions.

Scan here to connect or collaborate

Scan here to read the paper